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To address the problem of how cardiac muscle contraction affects the dynamics of rotating spiral waves,
spiral breakup induced by mechanical deformation in excitable media is studied in two partial-differential-
equation models. It is shown that spirals begin to break up atv=0.5v0 when we increase the amplitude of the
mechanical deformation gradually. Our numerical results point to a new mechanism of transition from spirals
to spatiotemporal chaos, in which the anisotropic time-dependent diffusion coefficient is essential.
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I. INTRODUCTION

Excitable media represent a wide class of nonequilibrium
systems that play an important role in physical, chemical,
and biological applications. Spiral excitation waves in two
spatial dimensions are among the most paradigmatic ex-
amples of spatiotemporal self-organizing structures in excit-
able media. They have been the subject of extensive research
in a large variety of systems, which include the catalytic
surface processes, the Belousov-Zhabotinsky(BZ) reaction,
and the heart muscle[1–3]. The breakup of spiral waves in
excitable medium disorders the spatial pattern of excitation
and results in turbulent or chaotic behavior. Understanding of
transitions from spiral waves to defect-mediated turbulence
has been of great interests in nonlinear physics. From a prac-
tical point of view, understanding the mechanism of spiral
instability could have potential impacts in cardiology. Recent
studies on animal hearts show clear evidences that the tran-
sitions from a state of ordered spiral waves to a state of
defect-mediated turbulence are responsible for life-
threatening situations such as tachycardia and fibrillation
[4–10]. This transition(spiral breakup) has been found in
experiments in pattern forming chemical reactions[11–13]
and numerical simulations in various models[14–20]. Re-
cently, the transition from spiral waves to defect-mediated
turbulence induced by gradient effects in a reaction-diffusion
system was also studied in experiment and numerical simu-
lation [21]. On the other hand, spiral will also break up under
external perturbations: Belmonteet al. [22] observed a tran-
sition from spiral to spatiotemporal chaos when a periodic
external forcing is added and the ratio of the spiral-rotation
period to that of the forcing is close to 3/2; Biktashevet al.
[23] studied the influence on spiral of linear shear flow and
found that it can induces spiral breakup.

To investigate how cardiac muscle contraction affects the
dynamics of rotating spiral waves, Muñuzuriet al. [24] de-

signed an elastic excitable medium by incorporating the BZ
reaction into a polyacrylamide-silica gel to investigate the
effect of mechanical deformation on spiral waves. They re-
ported that forequal frequencies of deformation and spiral
rotation, spirals will drift. Recently, we derived, directly
from the original reaction-diffusion equation and its spiral
wave solution, an approximate formula of the perturbation-
induced spiral wave drift velocity. And we are able to explain
the main features appearing in the spiral constant drift in-
duced by periodic mechanical deformation[25]. However, it
is more important to study whether spiral will break up under
mechanical deformation because cardiac muscle is contract-
ing all the time and the transitions from spiral waves to
defect-mediated turbulence are responsible for life-
threatening situations.

In this paper, we will study the effects of mechanical de-
formation on spiral waves in excitable media. It will be
shown that when the amplitude of mechanical deformation is
above a critical value and the frequency of mechanical de-
formation is around 0.5 times of that of the spiral, the tran-
sition from spiral waves to defect-mediated turbulence in-
duced by mechanical deformation will happen. The
mechanism of this kind of spiral breakup is intuitively un-
derstood: the wave is broken when the front curvature ex-
ceeds a certain critical curvature[26,27] which is modulated
by periodic mechanical deformation.

II. SPIRAL BREAKUP IN THE FITZHUGH-NAGUMO
MODEL

A. The FitzHugh-Nagumo model with mechanical deformation

Let us begin with a model of two-dimensional cardiac
tissue with transmembrane current described using simplified
excitable dynamics of the FitzHugh-Nagumo-type[28]
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where «se,gd=e+m1g/ se+m2d. Here the variablee stands
for the transmembrane potential, and variableg stands for
the conductance of the slow inward current. The function
−kese−adse−1d in the first part of Eq.(1) determines the fast
processes, such as the initiation of the upstroke of the action
potential. The dynamics of the recovery phase of the action
potential are determined by the time course of the variableg,
mainly by the function«se,gd. The particular parameters in
this model do not have a clear physiological meaning but are
adjusted to reproduce key characteristics of cardiac tissue,
such as shape of action potential, refractoriness, and restitu-
tion of action potential duration.

The mechanical deformation of medium can be modeled
by an operation where any fixed pointx of the medium is
changed tox̄std. Here, we consider a simple oscillation[24]
x̄std=xf1+A cossvt+fdg and Eq.(1) is then modified to
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one can reduce the forced Eq.(2) to
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which is identical with Ref.[24]: the stretching of the me-
dium can be modeled by changing the size of the grid in the
x-direction in the numerical simulation of Eq.(1).

Comparing Eqs.(1) and(3), one can see that the diffusion
constantDx [equal to 1 in Eq.(1)] has been changed tof1
+A cossvt+fdg−2 from the points of mathematics. Recently,
there has been considerable interest in pattern formation on
anisotropic reaction-diffusion systems[29], such as phase
turbulence in the anisotropic complex Ginzburg-Landau
equation[30], reaction-diffusion waves with sharp corners
[31–33], traveling wave fragments in anisotropic excitable
media [34], pattern formation processes in cardiac tissue
[35]. In reaction-diffusion systems, anisotropy usually enters
via the diffusion constants. In two dimensions, one can dis-
tinguish “simple” and “complex” anisotropy[29]. Simple an-
isotropy can usually be removed by simple scale transforma-

tions to dimensionless units. A complex anisotropy, in
contrast, cannot be removed by a simple scale transformation
and new pattern formation phenomena may appear. From the
point of mathematics, the mechanical deformation leads to a
time-dependentsimple anisotropy in diffusion constantDx
=f1+A cossvt+fdg−2, which has not been studied in detail
[29]. It will be shown that the time-dependent simple aniso-
tropy will induce appearance of new pattern formation
phenomena—spiral breakup.

B. Numerical results

We study the effects of mechanical deformation on spiral
waves by numerical simulation of Eq.(3) for a large range
for the parametersA andv. In this paper, we will not discuss
the drift of spiral waves induced by mechanical deformation
of excitable media(see Ref.[25] for the resonant drift of
spirals), but concentrate on the breakup of spiral waves in-
duced by mechanical deformation. The values of the param-
eters used in this investigation in Eq.(3) are k=8, a=0.15,
e=0.002,m1=0.2, m2=0.3. We shall refer to the space and
time units of this equation as s.u. and t.u., respectively. We
solve this system with explicit Euler scheme with time step
Dt=0.1 t.u. and space stepDx=0.5 s.u. with no-flux bound-
ary conditions.

For the same initial condition, we study the dynamics of
spiral waves for differentA and v. Spiral waves will be
periodically extended or contracted alongx-direction after
we switch on a relative strong mechanical deformation(Fig.
1). Generally, spiral will not break up at small deformation.
We find that spiral breakup occurred spontaneously when the
amplitudeAù0.29 and the frequency is around 0.5v0 [v0
=0.3762 is the angular frequency of the spiral of the
FitzHugh-Nagumo model(1)]. Numerical results show that
when we further increase the amplitudeA, the range ofv for
spiral breakup will be extended. Figure 2 shows different
stages of the transition from spiral waves to spiral turbulence
with v=0.5v0, A=0.3. We initiate a well developed spiral
wave [Fig. 2(a)] in a quiescent medium and then switch on
the mechanical deformation. After the system begins the me-
chanical deformation, the spiral becomes contracted or ex-
tended in the direction of mechanical deformation periodi-
cally [Fig. 2(b)]. After the spiral rotates several times, it
starts to break up in the regions not far from the spiral tip
[Fig. 2(c)]. The region of chaotic behavior continuously ex-
tends to other regions[Figs. 2(d) and 2(e)] and eventually the
system is full of spiral defects[Fig. 2(f)].

FIG. 1. Two typical states of spiral of Eq.(3) in the periodic
mechanical deformation withA=0.3, v=0.7v0, and f=p /2. (a)
Contracted spiral.(b) Extended spiral. The spatial patterns are a
gray scale plot ofe.
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The process by which the spiral breaks up in our case is
shown in detail in Fig. 3. One wavefront of the spiral waves
becomes unstable, and finally the wave breaks up. And after
the broken waves meet together, an excited spot is formed.
This spot interacts with the following wave and creates two
wave breaks, which develop into two spirals.

C. The mechanism

Previous theoretical studies of wave propagation based on
partial differential equations of excitable reaction-diffusion
systems show that the propagation velocity of excitable wave
depends on their local curvature and the curvature depen-
dence of propagation velocity is nonlinear[26]:

C = CsKd.

And there is a critical curvatureKc, such that no waves with
higher curvature can propagate in a given medium: the wave
front that locally exceeds the critical curvatureKc will break
up in this region and two free tips will appear. In Ref.[27],
the authors determined the critical curvatureKc analytically
and show that the diffusion constantD dependence ofKc is

Kc , D−1.

Therefore, the critical curvatureKc will be modulated when
periodic mechanical deformation is applied, i.e., a time-
dependent diffusion coefficient

Dx = f1 + A cossvt + fdg−2; Dy = 1.

From the simulations, we can see that the local curvatureK
of the wave is also changed when the mechanical deforma-
tion is applied(see Figs. 1–3). Now the mechanism of spiral
breakup due to mechanical deformation can be understood as
the following discussions: When the periodic mechanical de-
formation is applied, the local curvatureK of spiral waves as
well as the critical curvatureKc will change with the time
periodically. When the amplitude of mechanical deformation
is above a critical value and the frequency of mechanical
deformation is chosen suitably, in some region the local cur-
vatureK of the spiral waves will exceed critical curvatureKc
and the breakup of spiral waves will thus happen.

In Fig. 4, we give a section of the phase diagram in the

FIG. 3. Development of spiral breakup. The parameters are the
same in Fig. 2.

FIG. 4. Phase diagram revealing regions of deformed spiral and
spiral turbulence in the A−v plane (AP f0.27,0.33g, v
P f0.33,0.68g) of the forced FitzHugh-Nagumo model(3). Spiral
will break up at the dots. The steps ofA andv are 0.0025 and 0.01,
respectively.

FIG. 2. Time sequence illustrating the dynamics of spiral
breakup in a square lattice of sideL=35 with A=0.3 and v
=0.5v0. (a) t=0, (b) t=87 t.u., (c) t=99 t.u., (d) t=333 t.u.,(e) t
=792 t.u.,(f) t=999 t.u. Spirals begin to break up after some tran-
sient rotations. The resulting free ends created new spirals, which in
turn break after some time, eventually giving rise to a noncoherent
(turbulent) state.
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A−v plane (AP f0.27,0.33g, vP f0.33,0.68g) of the force
FitzHugh-Nagumo model. In the numerical simulations, the
steps ofA andv are 0.0025 and 0.01, respectively. One can
see that spiral begin to break up atv=0.5v0 when we in-
crease the amplitude gradually. The range ofv for spiral
breakup becomes wider whenA is increased.

III. SPIRAL BREAKUP IN THE OREGONATOR MODEL

To check whether spiral breakup induced by mechanical
deformation is sensitively model dependent, we also study
the influence of mechanical deformation on spiral waves in
the Oregonator model[36]:
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Here variablesu and v represent the concentrations of the
autocatalytic species HBrO2 and the catalyst in the
Belousov-Zhabotinsky(BZ) reaction. With medium me-
chanical deformation, the Oregonator model will be modified
as
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Numerical simulations of above equations show that spiral
will break up when the amplitude of mechanical deformation
is larger than 0.37. Being the same as the results of the
FitzHugh-Nagumo model, spiral begin to break up almost at
v=0.5V0 [V0=3.1416 is the angular frequency of the spiral
of the Oregonator model(4)] when we increase the force
gradually. Figure 5 gives an example of spiral breakup in the
forced Oregonator model(5).

IV. CONCLUSIONS

We have studied spiral breakup under the influence of the
mechanical deformation of the medium. It is found that spi-

ral is not stable and begin to break up when the mechanical
deformation is strong. Although the mechanical deformation
is one kind of time-dependent simple anisotropies[29], it can
induce appearance of new pattern formation phenomena: spi-
ral breakup. The mechanism of spiral breakup induced by
mechanical deformation is intuitively understood: the local
curvatureK of the wave and the critical curvatureKc are
both modulated when the periodic mechanical deformation is
applied, and the wave is broken when the local curvatureK
exceeds the critical curvatureKc. Since the heart is contract-
ing all the time, the mechanical deformation maybe is one
reason for spiral breakup in cardiac muscle, which is respon-
sible for life-threatening situations.
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